# Georgia Tech

# Background

- Manual labor is required to take inventory of herds of cattle in pastures
- Lost cows in larger herds can take hours to locate and identify
- Our sponsor CattleTime has designed UHF RFID cattle tags with cow information
- Current RFID technology featuring handheld RFID readers require ranchers to be within 1 [ft] of tag to read information



- Design an **RFID sensing system** to reduce labor time and increase pasture knowledge
- Automate inventory process
- Incorporate **GPS reading** capabilities with cattle tag reads
- Store tag information in a readily accessible manner

**Raising the Steaks** Long-Range RFID Sensing UAV System Team: Jesse Baker, Bryan Dahlqvist, Ashley Hrebik, Santiago Juarez, George Tzintzarov **Sponsor: CattleTime | Advisor: Dr. Tentzeris** 

# Solution

- A drone mounted system that:
  - Reads UHF RFID cattle tags
  - Captures GPS location
  - Outputs information to a USB flash drive



# System Design



Integrate RFID reader, battery and CPU on a UAV

#### **DJI Phantom 4**

1)

2)

3)

5)

Automated waypoints, collision avoidance, video feed

### ThingMagic USB Pro RFID Reader w/ Antenna

(a) Reader with 30 [dBm] output, (b) 1 [dBi] circular polarized antenna or (c) 5 [dBi] linear polarized antenna

#### **RaspberryPi 2B**

Drives GPS module over UART; Java code operates reader and stores tag readings to a \*.csv file

## 4) Adafruit Ultimate GPS Module **Shinngo External Battery Pack**





## Results

| Lab Test        |                |                  | Field Test        |                |                  |
|-----------------|----------------|------------------|-------------------|----------------|------------------|
|                 | Linear<br>pol. | Circular<br>pol. |                   | Linear<br>pol. | Circular<br>pol. |
| lsolated<br>tag | 25 ft          | 6.5 ft           | Isolated<br>tag   | 6 ft           | N/A              |
| Tag on<br>human | < 1 ft         | < 1 ft           | Tag on<br>Cow     | 10 ft          | N/A              |
| lsolated<br>tag | 5 ft           | 2 ft             | Isolated<br>tag   | 5 ft           | N/A              |
| Tag on<br>human | none           | none             | Tag on<br>Cow     | none           | N/A              |
|                 | Legend         |                  |                   |                | <u>,</u>         |
|                 | System wit     | hout Drone       | System with Drone |                |                  |
|                 |                |                  |                   |                |                  |

# Conclusions

- A tradeoff exists where linear polarization allows longer read range, whereas circular polarization allows for **freedom of orientation**
- Cow ear movement can lead to tag contact with **body** which nullifies RFID transmission
- Therefore, system collected no reads while in flight due to orientation and tag-body contact

# **Future Work**

- Field test circular polarization and alternative mounting schemes of linear polarized antenna
- Expand application to agricultural markets with additional RFID sensors (pH, temp, humidity)